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Abstract. Multivariate time series (MTS) arise when multiple intercon-
nected sensors record data over time. Dealing with this high-dimensional
data is challenging for every classifier for at least two reasons: First, an
MTS is not only characterized by individual feature values, but also by
the interplay of features in different dimensions. Second, the high di-
mensionality typically adds large amounts of irrelevant data and noise.
We present our novel MTS classifier WEASEL+MUSE which addresses
both challenges. WEASEL+MUSE builds a multivariate feature vector,
first using a sliding-window approach applied to each dimension of the
MTS, then extracting discrete features per window and dimension. The
feature vector is subsequently fed through feature selection, removing
non-discriminative features, and analysed by a machine learning classi-
fier. The novelty of WEASEL+MUSE lies in its specific way of extracting
and filtering multivariate features from MTS by encoding context infor-
mation into each feature. Still, the resulting feature set is small, yet very
discriminative and useful for MTS classification. Based on a benchmark
of 20 MTS datasets, we found that WEASEL+MUSE is among the most
accurate state-of-the-art classifiers.
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1 Introduction

A time series (TS) is a collection of values sequentially ordered in time. TS
emerge in many scientific and commercial applications, like weather observa-
tions, wind energy forecasting, industry automation, mobility tracking, etc. [18]
One driving force behind their rising importance is the sharply increasing use
of heterogeneous sensors for automatic and high-resolution monitoring in do-
mains such as smart homes [5], machine surveillance [10], or smart grids. A
multivariate time series (MTS) arises when multiple interconnected streams of
data are recorded over time. These are typically produced by devices with mul-
tiple (heterogeneous) sensors like weather observations (humidity, temperature),
Earth movement (three axis), or satellite images (in different spectra). We study
the problem of multivariate time series classification (MTSC). Given a concrete
MTS, the task of MTSC is to determine which of a set of predefined classes this
MTS belongs to, e.g., labeling a sign language gesture based on a set of prede-
fined gestures. The high dimensionality introduced by multiple streams of sensors
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is very challenging for classifiers, as MTS are not only described by individual
features but also by their interplay/co-occurrence in different dimensions [1].

In this paper, we introduce our novel domain agnostic MTSC method called
WEASEL+MUSE (WEASEL+MUltivariate Symbolic Extension). It conceptu-
ally builds on the bag-of-patterns (BOP) [13,12] model and the WEASEL [15]
pipeline. The BOP model moves a sliding window over an MTS, extracts
discrete features per window, and creates a histogram over discrete feature
counts. These histograms are subsequently fed into a machine learning classi-
fier. WEASEL+MUSE is different from state-of-the-art classifiers:

1. Identifiers: WEASEL+MUSE adds a dimension (sensor) identifier to each
extracted discrete feature. Thereby, it can discriminate between the presence
of features in different dimensions - i.e., whether the left or right hand was
raised.

2. Derivatives: To improve accuracy, derivatives in each dimension are added
as features to the MTS. These derivatives represent the general shape and
are invariant to the exact value at a given time stamp.

3. Interplay of features: The interplay of features along the dimensions is
learned by assigning weights to features (using logistic regression), thereby
boosting or dampening feature counts.

4. Order invariance: A main advantage of the BOP model is its invariance
to the order of the subsequences, as a result of using histograms over fea-
ture counts. Thus, two MTS are similar, if they show a similar number of
feature occurrences rather than having the same values at the exact same
time instances.

5. Feature selection: Given the wide range of features, many non-
discriminative features are introduced. We apply statistical feature selection
and weighting to identify those features that best discern between classes.

In our experimental evaluation using 20 public benchmark MTS
datasets [9] WEASEL+MUSE is constantly among the most accurate meth-
ods. WEASEL+MUSE clearly outperforms all other classifiers except for the
very recent deep-learning-based method from [6]. The paper is organized as fol-
lows: Section 2 briefly recaps definitions. In Section 3 we present related work. In
Section 4 we present our novel way of feature generation and selection. Section 5
presents evaluation results and Section 6 our conclusion.

2 Background: Time Series and Bag-of-Patterns

A univariate time series (TS) T = {t1, . . . , tn} is an ordered sequence of n ∈ N
real values ti ∈ R. A multivariate time series (MTS) T = {t1, . . . , tm} is an
ordered sequence of m ∈ N streams (dimensions) with ti = (ti,1, . . . , ti,n) ∈
Rn. For instance, a stream of m interconnected sensors is recording n values
at each time instant. As we primarily address MTS generated from automatic
sensors with a fixed and synchronized sampling along all dimensions, we can
safely ignore time stamps. A time series dataset D contains N time series. Note
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Fig. 1. The Symbolic Fourier Approximation (SFA): A time series (left) is approx-
imated using the truncated Fourier transform (centre) and discretized to the word
ABDDABBB (right) with the four-letter alphabet (’a’ to ’d’). The orange area (right)
represents the tolerance for all signals that will be mapped to the same word.

that we consider only MTS with numerical attributes (not categorical). The
derivative of a stream ti = (ti,1, . . . , ti,n) is given by the sequence of pairwise
differences t′i = (|ti,2 − ti,1|, . . . , |ti,n − ti,n−1|). Adding derivatives to an MTS
T = {t1, . . . , tm} of m streams effectively doubles the number of streams: T =
{t1, . . . , tm, t′1, . . . , t′m}. Given a univariate TS T , a window S of length w is a
subsequence with w contiguous values starting at offset a in T , i.e., S(a,w) =
(ta, . . . , ta+w−1) with 1 ≤ a ≤ n− w + 1.

Our method is based on the bag-of-patterns (BOP) model [12,13]. Algo-
rithms following the BOP model build a classification function by (1) extracting
subsequences from a TS, (2) discretizing each real valued subsequence into a
discrete-valued word (a sequence of symbols over a fixed alphabet), (3) building
a histogram (feature vector) from word counts, and (4) finally, using a classi-
fication model from the machine learning repertoire on these feature vectors.
Different discretization functions have been used in literature, including SAX [8]
and SFA [14]. SAX is based on the discretization of mean values and SFA is
based on the discretization of coefficients of the Fourier transform. Thereby,
SFA transforms a real-valued TS window to a word using an alphabet of size
c. Figure 1 exemplifies this process for a univariate time series, resulting in the
word ABDDABBB.

3 Related Work

The techniques used for TSC can broadly be categorized into two classes:
(a) similarity-based (distance-based) methods and (b) feature-based methods.
Similarity-based methods make use of a similarity measure like Dynamic Time
Warping (DTW) to compare two TS. In contrast, feature-based TSC rely on com-
paring features, typically generated from substructures of a TS. The most suc-
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Fig. 2. WEASEL+MUSE Pipeline: Feature extraction, univariate BOP models and
WEASEL+MUSE.

cessful approaches are shapelets or bag-of-patterns (BOP). Shapelets are defined
as TS subsequences that are maximally representative of a class. For multivari-
ate time series classification (MTSC) some domain agnostic MTSC have been
proposed. Symbolic Representation for Multivariate Time series (SMTS) [1] uses
codebook learning and the bag-of-words (BOW) model for classification. First, a
random forest is trained on the raw MTS to partition the MTS into leaf nodes.
Each leaf node is labelled by a codebook. For classification a second random
forest is trained on the BOW representations. The method Generalized Ran-
dom Shapelet Forests (gRSF) [7] also generates a set of shapelet-based decision
trees over randomly extracted shapelets. Learned Pattern Similarity (LPS) [2]
extracts segments from an MTS, trains regression trees to identify dependencies
between segments. It then builds a BOW representation based on the labels of
the leaf nodes. Finally, a similarity measure is defined on the BOW represen-
tations. Autoregressive (AR) Kernel [3] proposes an AR kernel-based distance
measure for MTSC. The method Autoregressive Forests for multivariate time se-
ries modelling (mv-ARF) [16] proposes a tree ensemble trained on autoregressive
models, each one with a different lag, of the MTS. Multivariate LSTM-FCN [6]
introduces a deep learning architecture based on a long short-term memory ar-
chitecture (LSTM), a fully convolutional network (FCN) and a squeeze and
excitation block.

4 WEASEL+MUSE (MUltivariate Symbolic Extension)

WEASEL+MUSE is composed of the building blocks depicted in Figure 2: the
symbolic representation SFA [14], BOP models for each dimension, feature se-
lection and the WEASEL+MUSE model. An MTS is first split into its dimen-
sions. Each dimension can then be considered as a univariate TS. To this end,
z-normalized windows of varying lengths are extracted from each univariate TS.
Next, each window is approximated using the truncated Fourier transform, re-
taining only the lower frequency components of each window. The extracted
Fourier values (real and imaginary part separately) are then discretized into
words based on equi-depth or equi-frequency binning using SFA [14]. As a result,
words (unigrams) and pairs of words (bigrams) with varying window lengths are
computed. These words are concatenated with their identifiers, i.e., the sensor
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(b) WEASEL+MUSE words per dimension
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Fig. 3. WEASEL+MUSE model of a motion capture. (a) motion of a left hand in
x/y/z coordinates. (b) the WEASEL+MUSE model for each of these coordinates. A
feature encodes the dimension, window length and actual word, e.g., 1 15 aa for ’left
Hand’, window length 15 and word ’aa’.

id’s dimension and the used window length. Thus, WEASEL+MUSE keeps a dis-
joint word space for each dimension. Figure 3 exemplifies the WEASEL+MUSE
model for a fixed window length 15 on motion capture data. The TS has 3 di-
mensions (x,y,z coordinates). A feature (′3 15 ad′, 2) represents a unigram ’ad’
for the z-dimension with window length 15 and frequency 2.

WEASEL+MUSE supports multivariate time series with streams of variable
lengths. When generating features, the window length can be larger than the
stream length n. In that case, no features are extracted (equal to feature counts
of 0 in the histogram).

Finally, WEASEL+MUSE applies the Chi-squared (χ2) test to identify the
most relevant features. Only features passing a certain threshold are kept to
reduce this feature space prior to training the classifier. We set the threshold
so that it is high enough for the logistic regression classifier to train a model in
reasonable time (and when set too low, training takes longer). We implemented
our MTS classifier using liblinear [4] as it scales linearly with the dimensionality
of the feature space [11].

The WEASEL+MUSE model is essentially a histogram of discrete features
(bag-of-patterns). The logistic regression classifier captures the interplay of fea-
tures across dimensions by training high weights for characteristic features. Thus,
dimensions are not treated separately but the weight vector is trained using fea-
tures from all dimensions. Still, this approach allows for phase-invariance of
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Dataset SMTS LPS mvARF DTWi ARKernel gRSF MLSTMFCN MUSE

ArabicDigits 96.4% 97.1% 95.2% 90.8% 98.8% 97.5% 99.0% 99.2%

AUSLAN 94.7% 75.4% 93.4% 72.7% 91.8% 95.5% 95.0% 97%

CharTrajectories 99.2% 96.5% 92.8% 94.8% 90% 99.4% 99.0% 97.3%

CMUsubject16 99.7% 100% 100% 93% 100% 100% 100% 100%

ECG 81.8% 82% 78.5% 79% 82% 88% 87% 88%

JapaneseVowels 96.9% 95.1% 95.9% 96.2% 98.4% 80% 100% 97.6%

KickvsPunch 82% 90% 97.6% 60% 92.7% 100% 90% 100%

Libras 90.9% 90.3% 94.5% 88.8% 95.2% 91.1% 97% 89.4%

NetFlow 97.7% 96.8% NaN 97.6% NaN 91.4% 95% 96.1%

UWave 94.1% 98% 95.2% 91.6% 90.4% 92.9% 97% 91.6%

Wafer 96.5% 96.2% 93.1% 97.4% 96.8% 99.2% 99% 99.7%

WalkvsRun 100% 100% 100% 100% 100% 100% 100% 100%

LP1 85.6% 86.2% 82.4% 76% 86% 84% 80% 94%

LP2 76% 70.4% 62.6% 70% 63.4% 66.7% 80% 73.3%

LP3 76% 72% 77% 56.7% 56.7% 63.3% 73% 90%

LP4 89.5% 91% 90.6% 86.7% 96% 86.7% 89% 96%

LP5 65% 69% 68% 54% 47% 45% 65% 69%

PenDigits 91.7% 90.8% 92.3% 92.7% 95.2% 93.2% 97% 91.2%

Shapes 100% 100% 100% 100% 100% 100% 100% 100%

DigitShapes 100% 100% 100% 93.8% 100% 100% 100% 100%

Wins/Ties 4 6 4 2 5 6 8 13

Mean 90.7% 89.8% 90% 84.6% 88.4% 88.7% 92.1% 93.5%

Avg. Rank 4.05 4.05 4.7 6.6 4.35 3.85 2.75 2.45
Table 1. Accuracies for each dataset. The best approaches are highlighted.

features as the classes (events) are represented by the frequency of occurrence
of discrete features rather than the exact time instance of an event.

5 Evaluation

Datasets: We evaluated our WEASEL+MUSE classifier using 20 publicly avail-
able MTS datasets from [9]. Each MTS dataset provides a train and test split
which we use unchanged to make our results comparable to prior publications.
Competitors: We compare WEASEL+MUSE to the 7 domain agnostic state-of-
the-art MTSC methods we are aware of: ARKernel [3], LPS [2], mv-ARF [16],
SMTS [1], gRSF [7], MLSTM-FCN [6], and the common baseline Dynamic Time
Warping independent (DTWi), implemented as the sum of DTW distances in
each dimension with a full warping window. All reported numbers in our ex-
periments correspond to the accuracy on the test split. We were not able to
reproduce the published results for MLSTM-FCN using their code. The authors
told us that this is due to random seeding and their results are based on a single
run. Instead, we report the median over 5 runs using their published code [6].
Training WEASEL+MUSE: For WEASEL+MUSE we performed 10-fold cross-
validation on the train datasets to find the most appropriate parameters for the
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Fig. 4. Average ranks on the 20 MTS datasets. WEASEL+MUSE and MLSTM-FCN
are the most accurate.

SFA word lengths l ∈ [2, 4, 6] and SFA quantization method equi-depth or equi-
frequency binning. We provide the WEASEL+MUSE source code and the raw
measurement sheets [17].

5.1 Accuracy

Figure 4 shows a critical difference diagram over the average ranks of the differ-
ent MTSC methods. Classifiers with the lowest (best) ranks are shown on the
right. The group of classifiers that are not significantly different in their rankings
are connected by a bar. The critical difference (CD) length at the top represents
statistically significant differences. MLSTM-FCN and WEASEL+MUSE show
the lowest overall ranks and the highest accuracies. These two are also signifi-
cantly better than the baseline DTWi. Overall, WEASEL+MUSE has 13 wins
(or ties) on the datasets (Table 1), which is the highest of all classifiers. With a
mean of 93.5% it also shows the highest average accuracy. Compared to our pre-
vious work WEASEL, we see a significant improvement in ranks (2.45 vs. 6.05).
WEASEL+MUSE performs best for sensor reading datasets and MLSTM-FCN
performs best for motion and speech datasets. Sensor readings are the datasets
with the least number of samples N or features n in the range of a few dozens.
On the other hand, speech and motion datasets contain the highest number of
samples or features in the range of hundreds to thousands. This might indicate
that WEASEL+MUSE performs well, even for small-sized datasets, whereas
MLSTM-FCN seems to require larger training corpora for the highest accuracy.

6 Conclusion

We have presented a novel multivariate time series classification method fol-
lowing the bag-of-pattern approach and achieving highly competitive classifi-
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cation accuracies. The novelty of WEASEL+MUSE is its feature space engi-
neering using statistical feature selection, derivatives, variable window lengths,
bi-grams, and a symbolic representation for generating discriminative words.
WEASEL+MUSE offers tolerance to noise (by use of the truncated Fourier
transform), phase invariance, and superfluous data/dimensions. In our evalu-
ation on altogether 20 datasets, WEASEL+MUSE is consistently among the
most accurate classifiers. It performs well even for small-sized datasets, where
deep learning based approaches typically tend to perform poorly.
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13. Schäfer, P.: The BOSS is concerned with time series classification in the presence

of noise. DMKD 29(6), 1505–1530 (2015)
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