Downlink MIMO in IEEE 802.11ac-based Infrastructure Networks

Anatolij Zubow
Technical University Berlin, Germany

Outline

- Motivation,
- System Model,
- Problem Statement,
- Proposed Approach,
- Evaluation,
- Conclusion.

Motivation

- Clear trend towards deploying dense IEEE 802.11
 wireless networks (WiFi) in enterprise environments,
- Wireless traffic explodes due to novel applications & appearance of WiFi enabled BYOD,
- New 802.11ac offers very high peak data rate by
 - Using MIMO transmissions (up to 8 antennas)
 - Open and closed-loop approaches; latter is more efficient but requires a complex channel sounding resulting in high overhead
- ^{802.11ac} Higher order **modulation** (256-QAM),
 - Larger bandwidth (up to 160 MHz)
 - Channel bonding might be inappropriate as in dense AP deployment the overall network capacity may be reduced due to co-channel interference / contention.

Dropbox

Tube

Motivation (II)

- In practice, the WiFi cells are unequally loaded:
 - Lightly loaded APs, i.e. floors, serving only a small number of active STAs/flows,
 - Highly loaded APs, i.e. in conference rooms, serving a large number of active STAs/flows.

System Model

DL of enterprise 802.11ac
 network (APs plus assoc. STAs),

High AP density, i.e. overlapping cells,

- AP are unequally loaded,
- APs are equipped with M antennas (e.g. ULA),
- STAs have just a single antenna,
- Total available radio spectrum can be used simultaneously (channel bonding).
- All APs are connected to a wired backbone & can be controlled by a centralized controller.

Wired data plane

Wired control plane

Problem Statement

- Objective: maximize the average DL rate in each cell which indicates the overall effectiveness of an AP.
- As we assume unequal network load our objective can be achieved by optimizing the DL throughput of highly loaded APs.
- Idea: lightly loaded APs use their unused degree of freedom to perform interference nulling towards STAs located in adjacent hotspot cells/AP => SINR gain for STAs in hotspot cells.
- But: STAs to be nulled must be carefully selected because otherwise the channel sounding overhead may exceed the gain from interference nulling.

Reminder: 802.11ac Channel Sounding

- Standard way to obtain CSI at transmitter side,
- The transmitter (AP) sends a **sounding packet** including only preambles and receives a **Compressed Beam** (CB) frame with modified CSI from the probed receiver(s), usually STA(s).
- Multi-user sounding: for each additional user a BF-Poll is transmitted which is replied by a CB.

Illustrative Example

 HS AP performs MU-MIMO (SDMA) by steering multiple beams towards its STAs whereas adjacent APs beamform their signal to their STAs, while nulling interference to the nearest STAs of the HS AP.

Proposed Approach

- Frequency-reuse 1, i.e. all APs use full spectrum,
- MAC layer time aligned channel access is required for interference-nulling (global TDMA),
- Channel sounding is performed regularly to active STAs in each cell,
- Controller algorithm groups STAs in two sequential steps:
 - i) SDMA grouping find optimal grouping of active STAs into spatially compatible groups:
 - Available instantaneous CSI is used for grouping
 - ii) Null grouping find optimal set of STAs to be nulled by any AP in each time slot:
 - Only average CSI towards STAs in adjacent cells is available during grouping.
 - After grouping the instantaneous CSI towards STAs in nulling groups is estimated.
- Reasoning: spatial multiplexing gain from SDMA is higher than SNIR gain from nulling.

Data & Control Flow

Evaluation

- Methodology
 - System-level simulation,
 - Placement & channel model,
 - Performance metrics,
- Methods under study:
 - Baseline (5x20 MHz): standard 802.11ac with dedicated 20 MHz channel for each cell,
 - Baseline (CSMA): standard 802.11ac where each cell uses the full 100 MHz,
 - Indep: same as Baseline (CSMA) but with CSMA deactivated,
 - Proposed

Scenario: hotspot cell in the middle surrounded by four lightly loaded cells.

Parameter	Value
System bandwidth	$100\mathrm{MHz}\&5 imes20\mathrm{MHz}$
PHY	IEEE 802.11ac (long preamble)
MAC	TDMA, CSMA/CA 802.11ac
Center frequency	5.32 GHz
Transmit power	10 dBm
STA noise density (dBm/Hz)	-167 dBm/Hz
STA noise figure	6 dB
Direction	Downlink
Channel sounding	explicit, 802.11ac
Pathloss model	802.16m indoor small office (A1)
MU-MIMO precoding	Zero-forcing
MU-MIMO grouping	Best-fit algorithm
Carrier sensing threshold	SINR=-3 dB (BPSK 1/2)
Inter AP distance	13-54 m
STA placement	uniform
No. of antennas at AP	4,8,12
No. of antennas at STA	1
No. of STAs in hotspot cell	20
No. of STAs in adjacent cells	1
No. of placement seeds	1000
•	

TABLE I: Simulation Parameters.

Mean STA Bitrate in Hotspot Cell

- Nt=8, δ =10 Hz (low mobility)
- Gain is especially high in very dense deployments

Channel Sounding Update Rate (HS Cell)

- High impact due to additional channel sounding overhead
- For δ <25 Hz the proposed scheme outperforms all other

Impact of Number of Antennas (HC Cell)

- Note: in 802.11ac channel sounding overhead increases with number of antennas (Nt),
- Proposed scheme scales with number of antennas at AP.

Mean STA Bitrate in Lightly-loaded Adjacent Cells

- Analyze the performance degradation in adjacent cells due to nulling towards hotspot cell,
- Nt=8, δ =10 Hz

Conclusions

- A combination of two MIMO techniques, namely MU-MIMO and interference nulling, is a promising way to improve the downlink performance of 802.11ac enterprise WiFi networks with unequal network load.
- An architecture is presented where a central controller executes an algorithm performing in two steps:
 - i) Grouping of spatial compatible STAs which are served by SDMA,
 - ii) Null grouping for interference management where the unused degree of freedom of lightly loaded APs is used to perform null steering towards STAs in highly loaded adjacent cells.
- The proposed adaptive algorithm takes the channel sounding overhead explicitly into account when calculating the set of STAs to be nulled.