On Practical Selective Jamming of Bluetooth Low Energy Advertising

S. Brauer, A. Zubow, S. Zehl, M. Roshandel, S. M. Sohi Technical University Berlin & Deutsche Telekom Labs Germany

Outline

- Motivation,
- Problem Statement,
- System Model,
- Bluetooth LE Advertising Primer,
- Proposed Jamming Solution,
- Evaluation,
- Countermeasures,
- Conclusion & Future Work.

Motivation

- The *Bluetooth Low Energy* (BLE) protocol stack gave rise to whole new class of devices: **BLE beacons**
- Beacons are small, often battery-powered devices, that continuously broadcast information by using the BLE Advertising process
- Despite their limited functionality they can be used to implement complex services, e.g.:
 - Targeted advertisement
 - Mobile Payment authentication (e.g. PayPal)
 - Indoor Navigation

Motivation (II)

- BLE beacons have seen a steady rise in popularity:
 - 72% of all retailers are expected to have beacon technology installed until 2019,
 - Hence the security of BLE beacons is worth investigating.
- BLE is prone to jamming attacks like any wireless technology,
- Purpose of this work is to discuss the risk of such a jamming attack on BLE beacons,
- Common definition for risk:

Risk = Likelihood x Impact

Problem Statement

- We devised five criteria to evaluate the risk of a jammer:
 - Jamming success (impact),
 - Energy-efficiency (impact),
 - Cost (likelihood),
 - Possible countermeasures/detection methods (likelihood & impact),
 - Ability to selectively jam targets (impact).
- Can we build a jammer that is optimized for this criteria?
 - A low-cost, energy-efficient selective jammer

System Model

- We consider the basic scenario consisting of:
 - A BLE beacon source emitting BLE advertisement packets,
 - A receiver which performs passive scanning for BLE adv packets,
 - A single jammer node.

Bluetooth LE Advertising Primer

- BLE operates in 2.4 GHz ISM band,
- Bit rate: 1 Mbit/s -> 1 bit = 1 μs air time
- 40 channels, 2 MHz each:

Bluetooth LE Advertising Primer (II)

- Advertising channel: channels 37, 38 and 39 (yellow),
- Advertising Channel are spread across the spectrum to avoid interference (Wi-Fi),
- Advertising uses a frequency hopping scheme to improve robustness, i.e. a beacon is transmitted on different adv. channels.

Bluetooth LE Advertising Primer (III)

 Advertising takes place at a regular interval advInterval (>20ms) with an added pseudo-random delay advDelay (between 0.625ms and 20ms) for collision avoidance.

 Note: During each Advertising Event the beacon is transmitted on all (!) three advertising channels.

Bluetooth LE Advertising Primer (IV)

 During each Advertising Event a beacon hops through all used advertising channels (mostly all 3) in ascending order.

 Two subsequent advertising packets within one Adv. Event must be less than 10 ms apart. A mimimum time is not specified.

Bluetooth LE Advertising Primer (V)

Basic BLE framing:

- Preamble + Access Address used as correlation code,
- No Forward Error Correction (FEC), so every bit error results in a corrupted packet (detected using CRC)

Jammer Design Principles

- We use commercially off-the-shelf (COTS) hardware that is BLE capable
 - Minimizes the cost,
 - This hardware is often already optimized for low energy consumption
- To save energy we employ a narrow-band jamming scheme with frequency hopping
 - Doesn't waste energy on unused bandwidth,
 - Makes our jammer harder to detect.
- The duration of the jamming signal can be kept at a minimum (no FEC in BLE)

Proposed Jamming Solution

- Selective, reactive narrow-band jammer:
 - Because we can only jam a single BLE channel at a time (-> narrowband) fast channel hopping has to be applied,
- The jammer is pre-programmed using an API:
 - Two options: white list or black list of device addresses to be jammed,
 - Configuration of the BLE adv. channels being used.

Proposed Jamming Solution (II)

- Jammer consists of two components:
 - Detection: jammer decodes packets onthe-fly to decide whether to jam this particular packet based on the device address,
 - 2. Jamming: on successful detection the jammer emits a short jamming signal.

Selective, Reactive Narrow-band Jammer

FSM of jammer w/ all 3 Adv channels used:

Implementation Details

- Jammer node: RedBearLab BLE Nano
 - BLE devkit equipped with a Nordic nRF51822 SoC and an integrated antenna,
 - nRF51822 is equipped with a BLE capable transceiver,
 - Max TX power: +4dBm,
 - Cheap: ca. 20 €,
 - Fast turn-around time (time needed to switch from receiving to transmitting): 140 μs,
 - Easily programmable

Evaluation Methodology

 Primary performance metric is Advertising Success Rate:

- Objective: min. ASR, i.e.
 ASR=0 is perfect jamming.
- Another metric is the area covered by the jammer:
 - Spatial area around the jammer with ASR < τ

Evaluation Methodology (II)

Receiver:

 Optimal receiver, i.e. dedicated Rf receiver (BLE Nano) for each BLE Adv. channel,

Every packet is logged (+CRC packets) using Nordic
 Sniffer and written to PCAP file for post-analysis in

MATLAB,

Sender:

- Commercial beacon (Gigaset G-Tag)
 - Adv. interval of 1 sec + all 3 Adv channels

Evaluation Methodology (III)

- We set-up an outdoor experiment:
 - Beacon source, jammer and receiver are put on a line elevated by 1 m from the ground (grass field),
 - Distance between beacon source and the receiver was set to d_sr=3.7 m,
 - The distance between the jammer and receiver (d_jr) nodes were varied from 1 to 10 meters.

Results

- At d=76 cm the ASR is zero, i.e. jammer successfully jam each transmitted BLE adv. frame transmitted on each channel (37, 38 and 39),
- At d=100 cm the ASR=3%,
- Note: TX power of jammer was just 4 dBm.

Countermeasures

We can divide countermeasures into two categories

1. Attack Detection

- Detect the presence of the jammer to allow further actions to be taken, e.g. removal of jammer,
- Decoy packets & K-mean clustering

2. Attack Mitigation

Actions that limit the impact of the jammer.

Countermeasures – Attack Mitigation

Use random channel hopping

- Our jammer cannot adapt to random hopping pattern, i.e. adv. channels are used in random order,
- But, we can use three jammer nodes, each configured to listen on a particular channel => no hopping required.
- Use randomized device addresses for BLE beacons,
- Use of short BLE frames
 - Our jammer's ability to jam is limited by its reaction time,
 i.e. 174 μs, => BLE payloads > 19 bytes,
 - But, the two most popular beacon protocols iBeacon and Eddystone both have larger payloads.

Conclusions & Future Work

- Can we build a low-cost, energy-efficient selective BLE jammer?
 - Yes, we can (with some limitations)
- Due to the low effort necessary, potential victims should anticipate jamming attacks
 - Especially if they have a commercial interest in their beacon network (e.g. retailers)

We Can!

 Ongoing research: how to deal with BLE beacons whose device addresses is randomized.