UniFlex: A Framework for Simplifying Wireless
Network Control

Piotr Gawlowicz, Anatolij Zubow, Mikotaj Chwalisz and Adam Wolisz
{gawlowicz, zubow, chwalisz, wolisz} @tkn.tu-berlin.de
Telecommunication Networks Group (TKN), Technische Universitidt Berlin (TUB)
Einsteinufer 25, 10587 Berlin, Germany

Abstract—Classical control and management plane for com-
puter networks is addressing individual parameters of protocol
layers within an individual wireless network device. We argue
that this is not sufficient in phase of increasing deployment of
highly re-configurable systems, as well as heterogeneous wireless
devices co-existing in the same radio spectrum. They demand
harmonized, frequently even coordinated adaptation of multiple
parameters in different protocol layers (cross-layer) in multiple
network devices (cross-node).

We propose UniFlex, a framework enabling unified and
flexible radio and network control. It provides an API enabling
coordinated cross-layer control and management operation over
multiple wireless network nodes. The controller logic may be
implemented either in a centralized or distributed manner. This
allows to place time-sensitive control functions close to the
controlled device (i.e., local control application), off-load more
resource hungry control application to compute servers and make
them work together to control entire network.

The UniFlex framework was prototypically implemented and
provided to the research community as open-source. We evalu-
ated the framework in a number of use-cases, what proved its
usability.

Index terms— Control, Cross-Layer, SDN, Wireless, Het-
Net, Distributed Control Plane

I. INTRODUCTION

The control plane and the management plane have played
a very important role in the classical telecommunication sys-
tems, but have been given much less attention in computer
networks. As the matter of fact the only widely accepted
approach is the usage of SNMP or NETCONF as basis
for creating management applications. This is increasingly
recognized as not sufficient - especially in case of wireless
networks where many parameters have to be frequently tuned
in response to changing wireless propagation, interference and
traffic conditions. There were already couple of attempts for
wireless control protocols including LWAPP and CAPWAP,
but those were designed with focus on configuration manage-
ment and device management and are not suitable for time-
sensitive control of devices.

Furthermore, classical control/management actions have
been addressing individual parameters of protocol layers
within an individual network device. This is not sufficient
in phase of increasing deployment of highly re-configurable
systems, as well as heterogeneous wireless systems co-existing
in the same radio spectrum. They demand harmonized, fre-
quently even coordinated (including simultaneous) change of

multiple parameters in different parts of hardware and software
in multiple network devices.

Typical example of emerging real scenarios are LTE-U and
Wi-Fi in 5 GHz and Wi-Fi, Bluetooth and ZigBee in 2.4 GHz
ISM bands. On the other hand even homogeneous deployments
are suffering from intra-technology interference [1]. Here, in
recent years, we have seen a boom of cross-layer design
proposals for wireless networks [2], [3], where additional in-
formation from some layers are obtained and used to optimize
operation of another layer.

So far control applications had to solve the challenges of
harmonized/simultaneous actions on case-by-case basis, which
significantly complicated development of such applications -
and lead to lack of any compatibility across the individual
solutions. We argue that the efficiency of wireless networks
can be significantly improved by enabling the management
and control of the different co-located wireless technologies
and their network protocols stacks in a coordinated way using
either centralized or distributed controllers [4].

Contribution: In this paper we propose UniFlex, a frame-
work for Unified and Flexible control in networked sys-
tems. The suggested API supports typical functions needed
for coordinated cross-layer, cross-technology and cross-node
control. Similarly, as in the SDN paradigm, we allow for
centralized control, but support equally well also hierarchi-
cal control structure and logically centralized but physically
distributed control. Network control applications can be either
co-located with controlled device (both running on the same
network node, e.g. for latency reasons) or separated from each
other (running on two nodes, e.g. control application runs
on server due to high computing power requirement). We
believe that UniFlex will be an enabler for rapid prototyping
and deployment of control applications for wireless networks.
The UniFlex prototype is provided as open-source to the
community: https://github.com/uniflex.

II. SYSTEM MODEL

In this section, we define our system model and provide
definitions of all terms that we use consistently in this paper.
A network is a collection of — possibly heterogeneous —
nodes under a common management and control authority.
A node is collection of equipment and software sharing a
common platform and being run under a single instance of

operating system. The types of nodes span from small con-
strained devices to powerful compute servers. A node contains
zero or more controllable units that fall under two categories:
i) devices in hardware domain and ii) protocols in software
domain. A controllable unit is a piece of hardware/software
fulfilling a dedicated functionality. Additionally, it may expose
a set of operations in the Native Programming Interface
(NPI) to control its behaviour and parameters. For example, a
wireless network device provides packet forwarding functions
with usage of wireless transmission technology (e.g. 802.11,
LTE, ZigBee) and exposes NPI to control its parameters
including transmission power, central frequency, bandwidth.

The operation of a network is harmonized by single or
multiple controllers. The controller logic may be implemented
either as standalone or multiple cooperating control applica-
tions that run in node(s). In particular, a control application
may be located in the same node as network device that it is
controlling. It usually collects information and measurements
from the network, make control decisions according to the set
policies and perform network reconfigurations.

We assume the existence of a common Control Channel
enabling the control application(s) to: i) access NPI of all con-
trollable units in network, ii) use it to control their behaviour
and iii) exchange control messages between each other for the
cooperation purposes. This control channel may be realized
over a wireless network itself (in-band) or an additional wired
backhaul infrastructure (out-of-band).

III. DESIGN REQUIREMENTS

The main goal of our work is to facilitate and shorten
time required for prototyping of novel control solutions in
heterogeneous wireless networks. We argue that novel wireless
applications may be realized when following functionality is
provided:

o Coordinated collection of information from and execu-
tion of multiple operations on different protocol layers
(cross-layer), heterogeneous devices (cross-technology)
and multiple nodes (cross-node) within network,

« Support for flexible placement of the control applications,
e.g. local control application for frequent interactions and
global one for cross-node coordination,

o Support for detecting network changes in proactive and
reactive control schemes,

e A high-level API for control of operation of individual
controllable units as well as groups of them.

IV. ARCHITECTURE OVERVIEW

The UniFlex framework is a distributed middleware plat-
form running across multiple nodes that interconnects control
applications and controllable units. The overview of UniFlex
architecture is presented in Fig.1. The control applications per-
form control tasks by utilizing the provided API in the North-
bound Interface, while the Southbound Interface is responsible
for translating calls coming from control applications to the
NPI. The interfaces are described in the following subsections.

Compute & Network Node Compute Node Network Node
()

Control App 'I Control App 'I

NBI NBI

=

UniFlex Middleware

—

SBI

A ﬁ
(Wireless) '

Network Device

SBI
(<
RN

J

Fig. 1. Overview of UniFlex architecture.

The framework takes care of node management including
node discovery and monitoring connections between all nodes.
Whenever a new node is discovered or connection to a node
is lost, it notifies all control applications about the changes.
Moreover, the UniFlex also discovers capabilities of each
node (i.e. its controllable modules and supported functions).
This way each control application can be supplied with all
information needed to create its global view of all nodes. By
default, each control application is able to communicate with
all other applications and control all units in the entire wireless
network, but some access policies restricting this possibility
may be applied.

Using UniFlex it is possible to develop distributed control
applications, i.e. it is possible to split-up control logic into
smaller cooperating control applications running on different
nodes. In this way, UniFlex by design support three types
of control programs: i) local — when controller is running
in the same node as controlled device(s), ii) non-local —
when controller is running on different node then controlled
device(s) and iii) hybrid or hierarchical — when controller logic
is split between multiple nodes.

The communication mechanism in UniFlex is based on ex-
change of events. An event is message that contains some in-
formation (e.g. notification, measurement sample, etc.). It can
be generated by the framework, a control application, device
or protocol — an event contains identifier of node and entity
that created it. On the other hand, only control applications
can consume events. To this end, they have to subscribe to be
notified about events of specific type. A control application
may send and subscribe for events in three modes: i) unicast,
ii) node-broadcast and iii) global-broadcast. In unicast mode
an application sends/receives events to/from a particular entity
in network. In node-broadcast mode application subscribes to
receive events of specific type generated by all entities running
in particular node, and send events to them. Finally, using
global-broadcast applications sends/receive events to/from all
entities in the entire network. The framework and controllable
units may send events only in global-broadcast mode.

Finally, as the coordinated control requires all nodes to
share the same notion of global clock, the framework provides

time synchronization mechanisms that work across different
network and on nodes with different capabilities.

A. Northbound Interface

The NBI provides a control application with the location-
independent API (i.e. the same calling syntax for execution of
NPI commands on local and remote controllable entities) that
allows for:

« blocking and non-blocking execution of commands,

o delaying execution of commands using relative time,

o scheduling execution of commands in future using abso-
lute time,

o sending, subscribing and receiving events of specific
types in three modes — see Section 1V,

« creation of group containing multiple similar entities and
execution of NPI commands on it,

o transactional execution of NPI commands,

« monitoring delay and time synchronization accuracy be-
tween peer nodes,

« controlling live cycle of control applications, including
deployment of a new ones at run-time,

« migration of control applications between nodes in net-
work,

In order to execute command, an control application has to
specify, so called, Calling Context, that contains information of
WHAT (command), WHERE (entity of group of them), HOW
(blocking, delayed, etc.) and optionally WHEN (point in time)
is to be executed. Optionally, in case of non-blocking, delayed
and time-scheduled execution, it is also possible to register
callback function that will be fired upon reception of return
value.

B. Southbound Interface

The Southbound Interface works in two directions: i) con-
trol application execute functions and change parameters of
controlled unit — downlink; and ii) the unit sends measurement
data, samples, etc. to subscribers — uplink. The communication
in downlink direction is realized with command calls, while
communication in uplink direction is realized using events.

The Southbound Interface is realized with help of modules,
that translate function calls from control applications into NPI
— Fig.2A. In other words, a module wraps different APIs
and tools used to control devices/protocols and exposes them
to framework. In Fig.2B, we present two modules as an
example. As shown SBI functions are delivered to modules and
translated to proper NPI calls, i.e. NETLINK and XML/RPC
respectively.

In many cases, while the semantics of features supported
by different devices may be the same, their NPI may differ
greatly. We argue that this would be error-prone and prevent
portability and re-usability of control applications. We believe
that those issues can be solved by a unified abstraction layer
that hides specific NPIs of different devices behind common
interface. We found Unified Programming Interface defined in
WiSHFUL project [5], [6] to be an appropriate option.

A) B)
___________ SBI | set_tx_power() | set_tx_power()
Network Device Wi-Fi Athok Wi-Fi GNURadio
Module Module Module
________________________ NETLINK .
NPI macg0211 XML-RPC

Network ath9k USRP

Device Device Device

Fig. 2. Device Module is a Python wrapper for Native Programming Interface.

V. IMPLEMENTATION DETAILS

The UniFlex framework was prototypically implemented.
The particular attention was paid to enable code re-usability
and support for different programming languages as well as
the possibility to use specialized external software libraries.

Our prototype is implemented in Python language, what
makes it possible to run on multiple different host types
and allows for rapid prototyping of control applications. As
we used only standard and common Python libraries, we
are able to run and test our implementation on multiple
platforms, including x86, ARM and MIPS. An overview
of framework implementation is given in Fig.3. An Agent
exposes Northbound Interface to Control Applications and
connects to Device/Protocol Modules using Southbound Inter-
face. The Agents communicate with each other over Broker.
All agents together with the broker constitute the distributed
UniFlex control framework middleware. Each depicted entity
is described in detail in the following subsections.

Node

Control Ap| 'I

Node

P
l NBI Device Module
(Wireless)
Network Device

Fig. 3. Overview of UniFlex framework implementation.

A. Northbound Interface

The overview of Northbound Interface is depicted as UML
diagram in Fig. 4. In order to control a node, an control
application has to first obtain a NodeProxy object. To this
end, it subscribes to NewNodeEvent events. On discovery
of a new node Agent notifies the application by sending event
containing a node proxy object. Thereafter, the application can
retrieve the DeviceProxy and/or ApplicationProxy
objects from the received NodeProxy and execute commands
on them — see Listing 2.

An control application sends events using
send_event(event) function and subscribe for events using
subscribe_for_events(eventType, callback). Once subscribed
the framework will deliver events of proper type to the
control application and fire the bounded callback passing

NodeProxy

DeviceProxy/ProtocolProxy

+get_delay()
+get_time_synchronization_accuracy()
+get_device_proxy(name)
+get_protocol_proxy(name)
+get_control_application_proxy(name)
+send_event(event)
+subscribe_for_events(eventType, callback)

+callback(callbackFunction)
+delay(relativeTime)
+exec_time(absoluteTime)
+send_event(event)
+subscribe_for_events(eventType, callback)
+unsubscribe_from_events(eventType)

+command_1(args)

+unsubscribe_from_events(eventType)

\&

ControlApplicationProxy

+command_N(args)A
C o
H

Set of commands that are
translated to
Native Programming Interface
of Device/Protocol

+is_running()

+start()

+stop()

+send_event(event)
+subscribe_for_events(eventType, callback)
+unsubscribe_from_events(eventType)

Fig. 4. Overview of Northbound Interface

event as an argument. Sending and subscription of events
are implemented around PUB and SUB sockets available in
the PMQ communication library [7]. Note that, for security
reasons an authentication and encryption can be applied on
OMQ level.

The execution of commands was implemented on top of
unicast event mechanism. For this purpose, we introduced two
events, namely CommandEvent and ResponseEvent that
are handled internally by the Agent. The CommandEvent
event contains Calling Context. The creation of Calling Con-
text and sending of CommandEvent is hidden behind execu-
tion of command call on proxy objects. To facilitate building
of the Calling Context, we introduce following functions: de-
lay(relative_time), exec_time(absolute_time) and callback(cb)
that may be executed on proxy object. They are optional
and may be chained together. The examples of the supported
calling semantics are presented in Listing 1.

In order to support delayed and time-scheduled function
execution, the Agent class is equipped with scheduler. Note,
when coordinating multiple nodes by means of time scheduled
execution, nodes in network must have common notion of
global clock. Currently, the synchronization mechanism is
based on Precision Time Protocol (PTP) and can be enabled
in the framework.

Listing 1. Calling examples.
definition of callback function
def my_get_power_cb(data) :
print (data)

get device proxy from node proxy
device = node.get_device (0)

execution of blocking call
result = device.get_tx_power ()

execution of non-blocking call

device.callback (my_get_power_cb) \
.get_tx_power ()
delay execution of
device.delay (3) .callback (my_get_power_cb) \
.get_tx_power ()
schedule execution of non-blocking call
t = datetime.now() + timedelta (seconds=3)
device.exec_time (t) \
.callback (my_get_power_cb) \
.get_tx_power ()

seconds

call by 3

B. Agent

The agent is an entity that runs control applications and
device/protocol modules. It connects with other agents present
in network and provides information about them and their
capabilities to its local control applications. For this purpose,
we implemented node discovery and heartbeat mechanisms.
Moreover, the agent is responsible for transferring events from
applications and modules to the broker.

C. Broker

The broker takes care for delivering events between agents.
Events of specific type are delivered only to those agents
that subscribed for them (i.e. at least one control application
running on agent subscribed for them). The broker is switching
events between XPUB and XSUB sockets available in @MQ
library [7] library. The ZMQ itself implements mechanisms
for topic agreement and message routing.

D. Control Application

A Control Application is an entity that implements the
entire or part of the network control logic. It can be as
simple as a signal filter or as complicated as a mobility
management unit. A control application has to inherit from
ControlApplication base class, provided in UniFlex
framework package, to get access to NBI.

While it is possible to subscribe at run-time to events
using subscribe_for_event() as described in Sec. IV-A, we
expect that mostly permanent (i.e. lasting for life-cycle of
an application) subscriptions will be used. For this purpose,
we provide on_event decorator that binds event notification
with desired function. For example in Listing 2, the control
application subscribes for NewNodeEvent events and gets
notification whenever a new node is discovered.

Listing 2. Example of blocking command call.

@on_event (NewNodeEvent)
def add_node (self, event):
node = event.node
device = node.get_device (0)
txPower = device.radio.get_tx_power ()

E. Southbound Interface

As already mentioned the SBI is realized with help of
modules. In order to be used within the UniFlex framework,
a device’s (protocol’s) NPI has to be wrapped with module
that inherits from the provided Module base class. This class
connects to agent, receives commands from control appli-
cations and executes corresponding function implementation
according to requested commands.

An example of function implementation is presented in
Listing 3. Here, a wifi_set_channel function takes channel as
an argument and uses the NETLINK interface to communicate
with the Linux 802.11 subsystem to configure the network
device. We provide bind_function decorator to mask function
names which can also be used to implement an unified
abstraction layer. In the example, the function is hidden behind

proper operation from UPI definition. Note that the Module
is a Python object and it may keep state — recent return values
may be cached to reduce delay. Finally, the Module class
takes care of serialization and parsing of events as well as
function arguments and return values.

The agent creates and presents a local proxy object for each
discovered module to all control applications running on top
of it. Such a proxy object contains all functions (i.e. the same
signatures) of remote module and corresponding functions are
bound together, i.e. calling function on proxy object translates
in execution of function in remote module object. This way,
we achieve location-transparency.

Listing 3. Example implementation of a device module function.

@bind_function (upi.radio.set_channel)

def wifi_set_channel (self, channel):
self.channel = channel
set channel in wireless interface using

return reponse

VI. APPLICATIONS

In this section, we present the selected control applications,
which we have implemented using the UniFlex framework.

A. Mobility Management

Novel applications, e.g. mobile HD video, and devices, e.g.
smartphones and tablets, require much better mobility support
and higher QoS/QoE. Therefore, in [8] we presented BIGAP,
a seamless handover scheme for high performance enterprise
IEEE 802.11 networks. We implemented the mobility man-
agement function of BIGAP in UniFlex. The Fig. 5 shows the
hierarchical controller architecture consisting of two central
control applications and two local ones running in each AP.
The local control applications are collecting information about:
i) quality of the active wireless links as well as potential links
to client stations in communication range which are currently
being served by another co-located AP; and ii) the current
network load at each AP. This data is reported as events
(CQIReportEvent and LoadReportEvent, respectively) to the
Central Mobility Manager, which decides on handover by
sending out a HORequestEvent. This event is processed by
the Handover Control Application which performs the actual
handover operation as described in [8].

B. Interference Management

Another known problem experienced in 802.11 networks
is performance degradation due to co-channel interference
caused by hidden nodes. The impact can be mitigated by
preventing overlapping transmissions (in time) of affected
nodes, e.g. APs, by efficient airtime management through
interference avoidance techniques at the MAC layer. We im-
plemented interference management in UniFlex. In particular
the following two features have been implemented: i) detection
of wireless links suffering from hidden nodes and ii) execution
of airtime management in which two wireless links suffering
from the hidden node problem are getting exclusive time slots
assigned. The Fig. 6 illustrates the developed hierarchical

Compute Node

Mobility
Manager

CQl/Load-

s
HORequest
HOReply
Event

change_routing
i@

Gateway

cal
Collector

7
Local
Node

Tx
Feedback

.........

STA1 STA2 \i

Fig. 6.
networks.

Interference management through airtime management in 802.11

controller architecture. Here, we have two control applica-
tions running on each AP locally due to timing constraints
and efficiency reasons. The TxFeedback control application
provides transmission feedback information like number of
ARQ retries to the central Hidden-node Detection control
application which is using this information for discovery
of hidden-nodes. Each pair of wireless links suffering from
hidden-node is reported using HNReportEvent and consumed
by another central control application, Interference Manager,
which in turn decides on the time slot configuration to be used.
The actual assignment of time slots to nodes is performed by
the local TDMA scheduler.

VII. EVALUATION

In this section we analyze the performance of our pro-
totypical implementation with respect to two categories: 1)
basic network operation and ii) scalability with respect to the
number of controlled network nodes.

A. Basic Network Operation

Since observing and modifying the network state by means
of executing API functions is a basic building block of
UniFlex operations, its performance is of great importance on
the overall system’s performance. We identified latency for
network state monitoring and API function execution as an
important performance metric.

For this measurement, the experiments were conducted
using three different network nodes: i) high performance
Intel 17-4790, ii) small-form-factor-PC based on Intel NUC
and iii) low-power single-board ARM Cortex-A8 machines
(BeagleBone). All three nodes were equipped with a single
802.11 network device. For the evaluation of the performance
of local calls we implemented a local control application
whereas for remote calls a global controller running on a
different node connected by Gigabit-Ethernet was used. We
measured the latency of executing API functions, both locally
and remotely.

Table I shows the mean and 99th percentile of the latency
when executing a single blocking local API function call,
get_interfaces() which returns the available wireless interfaces
of a wireless node.

Latency Median 99 %ile

Intel (i7-4790, 3.6 GHz) 0.4017 ms 0.5009 ms

Intel NUC (i5-4250U, 1.3 GHz) 0.7627 ms 1.3986 ms

BeagleBone (ARM armv7l, 1 GHz) 10.0138 ms 11.4258 ms
TABLE I

LATENCY FOR EXECUTING SINGLE BLOCKING LOCAL API FUNCTION.

Further, Table II shows the results when executing the same
function remotely. Note that the network overhead for the
execution of this API call is around 1600 Bytes per call.

From the results we can conclude that the latency of
performing an API call, locally or remotely, is sufficiently
low to be used for real-world control applications. However,
when using slow ARM SoCs the latency is 11 — 25X larger
as compared to i7-4790 which might be insufficient. We
argue that the UniFlex agent can be easily implemented in a
low-level programming language like C, what will definitely
shorten execution time of the API functions.

Latency Median 99 %ile

Intel (i7-4790, 3.6 GHz) 1.2896 ms 1.5042 ms

Intel NUC (i5-4250U, 1.3 GHz) 2.6748 ms 3.1662 ms

BeagleBone (ARM armv7l, 1 GHz) 14.5829 ms 16.4588 ms
TABLE 11

LATENCY FOR EXECUTING SINGLE BLOCKING REMOTE API FUNCTION.

B. Scalability

Another important performance metric is scalability. A key
feature of our framework is its distributed architecture for
scale-out performance. As the number of network nodes to be
controlled grows the demand on the control plane increases.

For this measurement, the experiments were conducted in
the ORBIT testbed [9] consisting of i7-4790 x86 machines.
The number of controlled network nodes was varied from 1
to 87 nodes. A single central control program was executing
API calls, get_interfaces(), on each node using non-blocking
calling semantic. We measured the latency to get the results
from all nodes.

The results are shown in Fig. 7. It takes less than 25 ms to
execute a non-blocking API call on all 87 network nodes. Note,
that the latency per API call decreases with the number of
nodes, i.e. 2.37ms vs. 0.24 ms for 1 and 87 nodes respectively.
This is because non-blocking calls are executed in parallel.

Note, that with 87 nodes and a API calling rate of 10 Hz the
control plane workload at the central controller is already high,
i.e. 16 Mbit/s. In order to reduce it, the use of hierarchical or
local controllers is advisable.

Asynchronous function call (get_interfaces()

—6— Median
—E— 99 %ile

257

20

Latency (ms)

0 T T T T T T T T
0 10 20 30 40 50 60 70 80
No. of wireless nodes

Fig. 7. Latency for executing single non-blocking API function call on a set
of nodes.

VIII. RELATED WORK
Related work falls into three categories:

Cross-layer Control: CRAWLER [10], [11] is experi-
mentation architecture for centralized network monitoring
and cross-layer coordination over different devices. Click-
Watch [12] aims for simplification of experimentation of
wireless cross-layer solutions implemented using the Click
Modular Router [13]. Both frameworks aim to facilitate ex-
perimentation and offer possibility to control all nodes in
the network from a single centralized controller. In contrast,
UniFlex is more flexible as it allows distributing controller
logic over multiple nodes so that the time sensitive control
logic can be executed directly on the network node.

Software-defined Networking: There are already several
distributed control frameworks, but they are mostly focused
on control of wired switches using open protocols (e.g. Open-
Flow). Some of them, like ONOS [14] and ONIX [15] are
focused on scalability and performance. As they are already
in very advanced state, it is hard to use them for resource
constrained devices or to adjust them to wireless networking.
Ryuo [4] and Kandoo [16] provide the possibility for offload-
ing of control applications to local controllers as a way to
reduce the control plane load. The local controllers handle
frequent events, while a logically centralized root controller
handles rare events. In contrast UniFlex is not restricted to two
levels of controllers as it allows direct communication between
any control applications. Beehive [17][18] provides interesting
features like automatic distribution of control applications
over network nodes. While having similar concepts, Beehive
does not differentiate between control applications and device

modules which are of great importance when targeting the
control of heterogeneous wireless networks.

CoAP [19] proposes a vendor neutral centralized framework
for configuration, coordination and management of residential
802.11 APs using an open API implemented over Open-
Flow [20]. In contrast to UniFlex, the CoAP API is restricted
to control of 802.11 networks. Moreover, only centralized
control programs are possible. OpenRF [3] provides program-
ming abstractions tailored for wireless networks, i.e. MIMO
interference management techniques that impact the physical
layer. OpenREF is restricted to centralized control of 802.11
infrastructure networks. Finally, in [21] SDN architecture for
centralized spectrum brokerage in residential infrastructure
Cognitive Radio networks was proposed.

General Distributed Control Platforms: ROS [22] is an
open source robot operating system for rapid prototyping. ROS
is focused on providing control for a single robot, trying to
achieve one goal, and having all devices working towards that
goal. In UniFlex, we are trying to achieve harmonization of
multiple devices. Moreover, we also provide time scheduled
execution of operations on multiple devices.

IX. CONCLUSIONS

This paper introduces UniFlex, a framework that uses SDN
concepts to simplify prototyping of novel wireless network-
ing solutions requiring cross-layer control coordinated among
multiple heterogeneous wireless network nodes. It provides a
rich API for management and control of operation of network
entities and allows for implementation of local, central and
distributed network controllers. For future work, we plan to
further develop and optimize UniFlex. In current implementa-
tion events between agents are sent over broker, what might
be a performance bottleneck and single point of failure. We
are working on direct communication between agents (while
keeping the broker for discovery purposes) and on support for
transactional execution of commands on multiple nodes.

X. ACKNOWLEDGMENT

This work has been supported by the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 645274 (WiSHFUL project).

REFERENCES

[1] J. Mvulla, E.-C. Park, M. Adnan, and J.-H. Son, “Analysis of asymmetric
hidden node problem in IEEE 802.11 ax heterogeneous WLANS,” in
Information and Communication Technology Convergence (ICTC), 2015
International Conference on. 1EEE, 2015, pp. 539-544.

[2] V. Pejovic and E. M. Belding, “Whiterate: A context-aware approach
to wireless rate adaptation,” IEEE Transactions on Mobile Computing,
vol. 13, no. 4, pp. 921-934, 2014.

[3] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi, “Bringing cross-
layer MIMO to today’s wireless LANs,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 387-398.

[4] S. Zhang, Y. Shen, M. Herlich, K. Nguyen, Y. Ji, and S. Yamada,
in Network Operations and Management Symposium (APNOMS), 2015
17th Asia-Pacific,.

[5]1 P. Ruckebusch, S. Giannoulis, E. De Poorter, I. Moerman, 1. Tinnirello,
D. Garlisi, P. Gallo, N. Kaminski, L. DaSilva, P. Gawlowicz et al.,
“A unified radio control architecture for prototyping adaptive wireless
protocols,” in Networks and Communications (EuCNC), 2016 European
Conference on. 1EEE, 2016, pp. 58-63.

[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

C. Fortuna, P. Ruckebusch, C. Van Praet, I. Moerman, N. Kaminski,
L. DaSilva, 1. Tinirello, G. Bianchi, F. Gringoli, A. Zubow et al.,
“Wireless software and hardware platforms for flexible and unified
radio and network control,” in European Conference on Networks and
Communications (Eu-CNC), 2015.

iMatix Corporation, “ZMQ - Code Connected,” http://zeromgq.org/, Jan-
uary 2014, accessed: 2015-08-04.

A. Zubow, S. Zehl, and A. Wolisz, “BIG AP — Seamless Handover
in High Performance Enterprise IEEE 802.11 Networks,” in Network
Operations and Management Symposium (NOMS), 2016 IEEE, April
2016.

D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the
ORBIT radio grid testbed for evaluation of next-generation wireless
network protocols,” in IEEE Wireless Communications and Networking
Conference, 2005, vol. 3. IEEE, 2005, pp. 1664—1669.

1. Aktag, O. Puniial, F. Schmidt, T. Driiner, and K. Wehrle, “A framework
for remote automation, configuration, and monitoring of real-world
experiments,” in Proceedings of the 9th ACM international workshop on
Wireless network testbeds, experimental evaluation and characterization.
ACM, 2014, pp. 9-16.

I. Aktas, F. Schmidt, M. H. Alizai, T. Driiner, and K. Wehrle,
“CRAWLER: An experimentation platform for system monitoring and
cross-layer-coordination,” in World of Wireless, Mobile and Multime-
dia Networks (WoWMoM), 2012 IEEE International Symposium on a.
IEEE, 2012, pp. 1-9.

M. Scheidgen, A. Zubow, and R. Sombrutzki, “ClickWatch—An exper-
imentation framework for communication network test-beds,” in 2012
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2012, pp. 3296-3301.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263-297, 2000.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed SDN OS,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1-6.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A Distributed Control Platform for Large-scale Production Networks,”
in Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 351-364.

S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19-24.

S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a Simple Abstraction
for Scalable Software-Defined Networking,” in Proceedings of the 13th
ACM Workshop on Hot Topics in Networks, ser. HotNets-XIII. New
York, NY, USA: ACM, 2014, pp. 13:1-13:7.

, “Beehive: Simple Distributed Programming in Software-Defined
Networks,” in Proceedings of the Symposium on SDN Research, ser.
SOSR ’16. New York, NY, USA: ACM, 2016, pp. 4:1-4:12.

A. Patro and S. Banerjee, “COAP: A software-defined approach for
home WLAN management through an open APL,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 18, no. 3, pp. 32—
40, 2015.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

A. Zubow, M. Doring, M. Chwalisz, and A. Wolisz, “A SDN approach to
spectrum brokerage in infrastructure-based Cognitive Radio networks,”
in Dynamic Spectrum Access Networks (DySPAN), 2015 IEEE Interna-
tional Symposium on. IEEE, 2015, pp. 375-384.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

