UniFlex
A Framework for Simplifying
Wireless Network Control

P. Gawtowicz, A. Zubow, M.Chwalisz, A. Wolisz

Jthnis'?f . ' TK N Telecommunication
niversita Networks Group

Berlin

Motivation

= Wireless network evolved to be highly complex
system

= Constantly changing radio environment requires
frequent tuning of parameters

= Control applications are ususally implemented case-
by-case

Objectives

= Reduce threshold for experimentation and
shorten time of prototyping

" Provide framework for development of novel
control and management solutions wireless
networks

" Improve performance and efficiency of
wireless networks

System Model

Wireless Network

Ra\itliio\li)/evi\;/es Y [Cont;'oller] Y Y

Node [Node J Node]

L L Y L P R L L L L T P P P P Yt

Control Channel

Device Programming Interface

Native Device
Programming

‘ Interface (NDPI)

(

N

Device
_ J
WiFi NDPI LTE NDPI ZigBee NDPI SDR NDPI
@
@ e ¢4 v

Requirements

= Coordinated collection of information from and
execution of commands on different:

= protocol layers (cross-layer),
= heterogeneous devices (cross-technology)
= multiple nodes (cross-node) within network

= Possibility to implement logically centralized and
physically distributed control applications

= Support for multiple levels of control for scalability
reasons

= Support for proactive and reactive control schemes

= A high-level API for control of operation of individual
wireless devices and groups of devices

= Unification of different NDPI

UniFlex Architecture

Compute & Network Node

Compute Node

Network Node

r

\.

(Wireless)
Network Device

J

N N N
V- y.a
[[
(Control App)D (Control App ﬁ
i i NBI i i NBI
(A
UniFlex Middleware
. J
4}SBI
[

Northbound Interface

= Based on event exchange mechanism +
Remote Procedure Calls

@on_event(NewNodeEvent)

def my_new_node_cbh(self, event):

node = event.node

NodeProxy

DeviceProxy/ProtocolProxy

+get_delay()
+get_time_synchronization_accuracy()
+get_device proxy(name)
+get_protocol_proxy(name)
+get_control_application_proxy(name)
+send_event(event)
+subscribe_for_events(eventType, callback)
+unsubscribe_from_events(eventType)

1

*

ControlApplicationProxy

+is_running()

+start()

+stop()

+send_event(event)
+subscribe_for_events(eventType, callback)
+unsubscribe_from_events(eventType)

>—

+callback(callbackFunction)
+delay(relativeTime)
+exec_time(absoluteTime)
+send_event(event)
+subscribe_for_events(eventType, callback)

+unsubscribe_from_events(eventType)

+command_1(args)
+command_N(a rgs)‘

Set of commands that are
translated to
Native Programming Interface
of Device/Protocol

Southbound Interface

= translates function calls from control

applications into NDPI
= unifies different NDPIs

A) B)

...... 1 ----- SBI _] _s_(_e_t_tx_power() ______[__S_g_t_tx_power()
Network Device Wi-Fi Ath9k Wi-Fi GNURadio
Module Module Module

NETLINK
mac80211

Network
Device

Distributed Middleware

= The framework is an distributed middle-ware
platform that:

= provides communication channel for control
applications

« exposes NDPI of network devices to control
applications

" |t takes care about maintaing up-to-date
information, including:

» node discovery and monitoring connection between
all nodes

« notifying control applications about changes

Implementation

@ python’

Python Node

OMQ

= Event delivery mechanisms
implemented using

PUB/SUB sockets from ZMQ

= RPCimplemented on top of
unicast event mechanism

= |ntegration with Node-RED — a graphical
language for pipeline data processing

Python Node

Node-RED Node

[w)

<

§.
\\—/)

.)

(Agent)
jENBI

Eata Processing Pipa
\.

J
Node-RED Node

Calling Examples

@on_event(PacketLostEvent) € subscribe for PacketLostEvent
def my_pkt_lost_cb(self, event):
get device proxy from node proxy
device = event.device
execution of blocking call
pwr = device.get_tx_power()
delay execution of call by 3 seconds
device.delay(3).set_tx_power(pwr+2)
schedule execution of non-blocking call
t = datetime.now() + timedelta(seconds=6)
device.exec_time(t).callback(my_get power cb).get tx_power|()

Example Applications

Mobility Management — Handover
Y

Compute Node

CQl/Load-

send_CSA

Mobility
Manager

HORequest

Handover

App
\\—, -/

HOReply
Event

addsTA/
set_ARP

cal
Collector

Local
_ Node

Network
Load

()
AP &
~
STA mobility
J

change_routing
\

Gateway

Interference management
through air-time management

Event

TxReport

Tx
Feedback

Local
Node

Interference
Manager

Detection

-
. -

) L

STA1 STA2

Compute Node

Hidden-node

SlotConfig

Local
Node

Tx
Feedback

Conclusions

= UniFlex is a framework that simplifies
orototyping of novel wireless solutions

= |t provides rich API for control and
management of network entities

= |t allows to implement local, central and
nierarchical control planes.

" |t’s usability was proved in several
implemented use-cases.

Thank you!

