The Future is Unlicensed On Coexistence in the Unlicensed Spectrum

A. Zubow, P. Gawłowicz Technische Universität Berlin, Germany

Motivation

 Rapid growth in the use of smart phones / tablets and appearance of new applications like multimedia streaming & cloud storage.

 WiFi is the dominant access technology in residential/ enterprise environments and there is strong trend towards further densification,

- Concerts,
- Stadiums,
- Airports,
- Malls

 5 GHz band is spectrum of choice for next-gen WiFi as 2.4 GHz is already very crowded.

Trend in Mobile Networks

Mobile Internet connectivity
has gained a wide spread
popularity with LTE,

- To support rapid traffic growth cost-effective solutions for capacity expansion are needed,
 - Massive network densification using (small) cells with higher capacity per cell,
 - Direct usage of unlicensed (free) spectrum

Options to Use Unlicensed Spectrum

- Direct usage of unlicensed spectrum
 - LTE-Unlicensed,
 - Licensed-Assisted Access LAA,
 - MulteFire
- 2. Usage of WiFi infrastructure
 - LTE/WiFi aggregation (LWA)
 - WiFi offloading

nabling Flexibility of Traffic Split Function in LTE-WiFi Aggregation Networks through SDN, WSA 2018, S.Bayhan and A.Zubow

Uncoordinated Coexistence

- LTE and WiFi compete for shared radio resources
 - Leading to performance degradation in both NWs due to:
 - i) increased contention,
 - ii) mutual interference

How does LTE interference affect WiFi?

Uncoordinated Coexistence

- Current solutions focus on simple but inefficient uncoordinated coexistence
 - LTE creates coexistence gaps in frequency/time/space domain,
 - E.g. LTE-U: channel access w/ adaptive duty cycling

Towards Coordinated Coexistence

- Our goal is to introduce explicit cooperation between LTE-U & WiFi NWs,
- Leads to more efficient operation as advanced coordination schemes can be applied:
 - Cross-technology interference & radio resource management,
 - "Better" usage of radio resources by considering QoS, fair sharing
- But such coordination requires a control channel between colocated nodes of heterogenious technologies (LTE-U & WiFi),

Cross-technology communication (CTC)

Challenging as LTE/WiFi have incompatible PHY layer

LtFi

Enabling Cross-technology
 communication between LTE-U and WiFi —

How to start collaboration?

- Common control channel is required
- WiFi AP and LTE-U BS can connect over Internet

- but have no clue:
 - who is interfering with them?
 - how to reach co-located neighbors?

Over-the-air Neighbor Discovery

- A node advertises itself to others
- Homogenous technologies:
 - Automatic Neighbor Relation (ANR) in LTE
 - ResFi[1] in WiFi (by TUB)
- How to perform neighbor discovery between nodes of heterogenous technologies?

[1] S.Zehl et al., "Resfi: A secure framework for self organized radio resource management in residential WiFi networks", WoWMoM 2016

Cross-technology Communication

- CTC enables heterogeneous devices to talk directly
 - Simple side-channel on top of normal transmission (e.g. duration of gaps)
 - Low data rates (up 100s bps) enough for control data

TX: My ID is 12

RX: My ID is 12

LtFi – Architecture Overview

- LtFi: Lte->WiFi
- LtFi consists of two interfaces:
 - Air-Interface over-the-air CTC broadcast channel
 - X2-Interface over-the-wire bidirectional channel
- LtFi Management Unit (MU) manages a LTE network
- Access Point Management Unit (APMU) manages a WiFi AP

LTE-U Primer

- The first cellular solution for use of 5GHz band
 - only downlink (DL)
 - secondary carrier in addition to the licensed anchor
 - channel bandwidth is 20MHz
- Two versions of LTE-Unlicensed: LTE-LAA(LBT) and LTE-U(CSAT)
- Carrier Sense Adaptive Transmission (CSAT):
 - period 40, 80, 160ms
 - duty cycle adaptation based on number of WiFi and LTE nodes, max 50%
 - puncturing for low-latency WiFi traffic

7/20

LtFi-Air-Interface: PHY Layer

- LtFi exploits the freedom to put puncture within LTE-U's on-time
- The position of the puncture encodes the data bits
 - standard compliant
 - introduced delay is negligible (1-2ms)
- A 20ms LTE-U transmission chunk is used to encode single LtFi symbol

LtFi Frame Structure

LtFi frame consists of multiple LtFi symbols

- Frame Structure:
 - Preamble 4 LtFi symbols the start of the frame
 - Data Payload IP address (4B) and Cell ID (2B)
 - CRC Field error detection using CRC16

LtFi-Air-Interface: Integration

- LtFi is only a software add-on
 - No hardware changes!
- At LTE-U side, LtFi TX interacts with LTE scheduler

- At WiFi side, LtFi RX samples MAC state distribution:
 - the time spent in the energy detection (ED) state without triggering packet reception (RX) i.e. interference (Intf)

LtFi-Air-Interface: Demodulation

- Frame detection and synchronization
 - cross-correlation based preamble detector

- Symbol demodulation:
 - take samples of one symbol
 - compute CC to each valid symbol
 - take the one with the highest CC value
 - decode bits

Repetition coding: LtFi frames are transmitted in loop

Theoretical Throughtput Analysis

The number of available symbols M:

$$M = \binom{n}{k} = \frac{n!}{k!(n-k)}, \quad 0 \le k \le n$$

where n - number of possible puncture positions, k - number of used punctures

Transmission rate:

$$R[bps] = \frac{\lfloor log_2(M) \rfloor \cdot z}{T_{cycle}}$$

where *Tcycle* is LTE-U cycle and *z* is number of LtFi symbols of 20ms in one cycle

Prototype Implementation

Hardware:

TX: Ettus USRP X310

RX: COTS WiFi NIC (Atheros AR928x)

Software:

TX: srsLTE modified to support duty-cycled operation

RX: ath9k driver with RegMon tool, LtFi RX implemented in Python

Frame Error Rate

- Works even with ongoing WiFi traffic
- Half-duplex constraint in case of high DL traffic (node is deaf)
- Performs good until 2-3dB over ED Threshold (-62dBm), but...

ED Threshold adaptation

ED threshold can be adapted down to -92dBm

Advanced Cross-technology Coordination Schemes

- Interference Nulling -

[1] S. Bayhan, A. Zubow, and A. Wolisz, "Coexistence Gaps in Space via Interference Nulling for LTE-U/WiFi Coexistence" in IEEE WoWMoM 2018, to appear.

[2] A. Zubow, P. Gawłowicz and S. Bayhan, "On Practical Coexistence Gaps in Space for LTE-U/WiFi Coexistence" in European Wireless 2018, to appear.

Interference-nulling for Coexistence

Our idea: exploit the MIMO capabilities of LTE-U BS for cross-technology interference nulling (CTIN) towards WiFi nodes

Primer on Interference Nulling

Primer on Interference Nulling

Coexistence Gaps in Space

WiFi

- Favorable as competition for shared time/freq resources is reduced,
- Promises a win-win solution for both LTE & WiFi
 - Increased throughput,
 - Lower medium access delay
- Trend towards massive MIMO even for small cells

Transmission to *nulled WiFi* nodes

Why is Nulling beneficial for LTE-U?

- LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in its neighborhood.
- With nulling LTE-U can increase its airtime usage:

1/ No nulling:

$$\alpha_{no} = 1 / (N_{cs}+1)$$

2/ Nulling
$$K_{\emptyset}$$
 Wifi nodes:
 $\alpha(K_{\emptyset}) = 1 / (N_{cs} - K_{\emptyset} + 1)$

where N_{cs} is number of detected WiFi nodes

- ... with some reduction in SNR on BS-UE link -> tradeoff,
- Interesting case when K < N_{cs}, where only a subset of WiFi nodes can be selected for nulling -> optimization problem [1]

WiFi Channel Access under Nulling

- During the LTE-U ON-period transmissions from "nulled" WiFi nodes are possible in both UL + DL,
- But impossible for LTE-U BS to predict which WiFi node will transmit → random channel access of WiFi,
- Hence BS's nulling configuration should only depend on the location of WiFi nodes and NOT on their unpredictable traffic,
- Our approach is to focus on just WiFi DL traffic

Selected Results from Simulations

LTE-U

BS

Coexistence setting:

STA i

WiFi AP

STA₁

- From system-level simulations,
- ULA w/ K=6 antennas, N=8 no. of WiFi STAs,
- Distance between BS and AP was varied,
- Network throughput

Network throughput (Mbps)

200.0

150.0

100.0

50.0

UE j

Is Cross-technology Interference-Nulling practically feasible?

- Such coordinated co-existence scheme requires:
 - 1. CTC channel for the exchange of control messages
 - LtFi-CTC
 - 2. Interference nulling requires channel state information (CSI) at transmitter side, i.e. LTE-U BS
 - Cannot be obtained over LtFi-CTC

XZero: Our Approach to Practical CTIN

Our idea: Do not estimate channel state information (CSI) but perform null search steered by the feedback from the WiFi nodes to be nulled

5. Continue with testing next nulling configuration

Tree-based Null Search

Main Steps in XZero

Challenges:

- Power correction for precoding vector needed to tackle multi path propagation,
- Backhaul latency for feedback from WiFi to LTE,
- Precoding weight: for each LTE OFDMA RRB,
- WiFi-side measurement:
 OFDM subcarrier,
- A mapping needed between WiFi side and LTE side

XZero Prototype

- Is custom hardware needed?
 - No, prototype based on SDR-USRP (LTE) and COTS (WiFi)
- Is special software needed?
 - No, usage of open-source softwarebased LTE stack (srsLTE) & WiFi driver (ATH9k),
 - Most functionality of LtFi & XZero implemented in Python

LTE-U BS+UE

WiFi nodes (Atheros AR95xx)

Small-scale Evaluation at TKN

 Interference-to-noise ratio (INR) reduction under optimal conditions - frequency-flat wired channel

Large-scale Evaluation in ORBIT Grid

Real wireless (frequency-selective) channel, 2.4 GHz

ULA w/ K=4 antennas selected

- 27 randomly selected WiFi nodes
- Main results:
 - 15.7 dB decrease in INR at nulled WiFi nodes
 - Linear-search slightly better: higher INR
 - Tree-search: 10× faster than linear search

Reconfiguration Delay

- Null search has to be performed upon change in network topology,
- Parameters affecting configuration delay:
 - Selected angular resolution, length of LTE-U on-period, WiFi sampling frequency, LTE-WiFi backhaul latency, tree-search fan-out
- For single WiFi node: < 1 sec & speed-up of 10x compared to linear search

Take-aways

- Need for efficient coexistence schemes for operation in unlicensed 5 GHz spectrum,
- We propose explicit cooperation between co-located LTE-U and WiFi networks,
- We suggest to create coexistence gaps in space by means of cross-technology interference nulling (CTIN),
- XZero is practical CTIN on SDR/COTS hardware
- LtFi enables cross-technology communication (CTC) which is needed for coordinated coexistence